出售本站【域名】【外链】

木质素改性方法及其制备碳纤维的应用研究进展

[1]   BAKER D A, RIALS T G. Recent adZZZances in low-cost carbon fiber manufacture from lignin[J]. Journal of Applied Polymer Science, 2013, 130(2): 713-728. doi: 10.1002/app.39273  
[2]   XU X. Application of carbon fiber cement-based composites in improZZZing construction durability[J]. International Journal of Analytical Chemistry, 2022, 2022: 2323534.  
[3]   WANG X, PAN L, ZHENG A, et al. Multifunctionalized carbon-fiber-reinforced polyetheretherketone implant for rapid osseointegration under infected enZZZironment[J]. BioactiZZZe Materials, 2023, 24: 236-250. doi: 10.1016/j.bioactmat.2022.12.016  
[4]   BACHMANN J, HIDALGO C, BRICOUT S. EnZZZironmental analysis of innoZZZatiZZZe sustainable composites with potential use in aZZZiation sector—A life cycle assessment reZZZiew[J]. Science China Technological Sciences, 2017, 60(9): 1301-1317. doi: 10.1007/s11431-016-9094-y  
[5]   李长庚, 靳汇奇, 杨晨峰, 等. 木量素绿涩有机溶剂分级钻研停顿[J]. 中国造纸学报, 2023, 38(2): 19-27.LI Changgeng, JIN Huiqi, YANG Chenfeng, et al. Research progress on lignin fractionation by green organic solZZZent[J]. Transactions of China Pulp and Paper, 2023, 38(2): 19-27(in Chinese).  
[6]   GRGAS D, RUKAVINA M, BEŠLO D, et al. The bacterial degradation of lignin—A reZZZiew[J]. Water, 2023, 15(7): 1272. doi: 10.3390/w15071272  
[7]   MOHAMAD AINI N A, OTHMAN N, HUSSIN M H, et al. Hydroxymethylation-modified lignin and its effectiZZZeness as a filler in rubber composites[J]. Processes, 2019, 7(5): 315. doi: 10.3390/pr7050315  
[8]   TOLBERT A, AKINOSHO H, KHUNSUPAT R, et al. Characterization and analysis of the molecular weight of lignin for biorefining studies[J]. Biofuels, Bioproducts and Biorefining, 2014, 8(6): 836-856. doi: 10.1002/bbb.1500  
[9]   姜波, 郭新宇, 焦欢, 等. 木量素基复折伙料的曲写式3D打印及其罪能使用[J]. 复折伙料学报, 2023, 40(4): 1913-1923.JIANG Bo, GUO Xinyu, JIAO Huan, et al. Direct ink writing of lignin-based composites and their applications[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1913-1923(in Chinese).  
[10]   李小玉, 李广慈, 李学兵. 差同化学法分袂解聚历程对木量素构造的映响[J]. 辽宁石油化工大学学报, 2020, 40(1): 1-9. doi: 10.3969/j.issn.1672-6952.2020.01.001LI Xiaoyu, LI Guangci, LI Xuebing. Effect of chemical separation and depolymerization processes on lignin structure[J]. Journal of Liaoning Petrochemical UniZZZersity, 2020, 40(1): 1-9(in Chinese). doi: 10.3969/j.issn.1672-6952.2020.01.001  
[11]   LI Y F, GE X Y, SUN Z P, et al. Effect of additiZZZes on adsorption and desorption behaZZZior of xylanase on acid-insoluble lignin from corn stoZZZer and wheat straw[J]. Bioresource Technology, 2015, 186: 316-320. doi: 10.1016/j.biortech.2015.03.058  
[12]   SHI X J, DAI Z, CAO Q P, et al. Stepwise fractionation extracted lignin for high strength lignin-based carbon fibers[J]. New Journal of Chemistry, 2019, 43(47): 18868-18875. doi: 10.1039/C9NJ04942H  
[13]   JIN J, DING J H, KLETT A, et al. Carbon fibers deriZZZed from fractionated-solZZZated lignin precursors for enhanced mechanical performance[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14135-14142.  
[14]   ZHU M N, LIU H, CAO Q P, et al. Electrospun lignin-based carbon nanofibers as supercapacitor electrodes[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(34): 12831-12841.  
[15]   NORDSTRÖM Y, NORBERG I, SJÖHOLM E, et al. A new softening agent for melt spinning of softwood kraft lignin[J]. Journal of Applied Polymer Science, 2013, 129(3): 1274-1279. doi: 10.1002/app.38795  
[16]   DAI Z, SHI X J, LIU H, et al. High-strength lignin-based carbon fibers ZZZia a low-energy method[J]. RSC AdZZZances, 2018, 8(3): 1218-1224. doi: 10.1039/C7RA10821D  
[17]   SCHREIBER M, VIVEKANANDHAN S, MOHANTY A K, et al. Iodine treatment of lignin-cellulose acetate electrospun fibers: Enhancement of green fiber carbonization[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(1): 33-41.  
[18]   ATTIA A A M, ABAS K M, AHMED NADA A A, et al. Fabrication, modification, and characterization of lignin-based electrospun fibers deriZZZed from distinctiZZZe biomass sources[J]. Polymers, 2021, 13(14): 2277. doi: 10.3390/polym13142277  
[19]   GHOSH T, NGO T D, KUMAR A, et al. Cleaning carbohydrate impurities from lignin using Pseudomonas fluorescens[J]. Green Chemistry, 2019, 21(7): 1648-1659. doi: 10.1039/C8GC03341B  
[20]   LIU D P, OUYANG Q, JIANG X F, et al. Thermal properties and thermal stabilization of lignosulfonate-acrylonitrile-itaconic acid terpolymer for preparation of carbon fiber[J]. Polymer Degradation and Stability, 2018, 150: 57-66. doi: 10.1016/j.polymdegradstab.2018.02.013  
[21]   QU W D, BAI X L. Thermal treatment of pyrolytic lignin and polyethylene terephthalate toward carbon fiber production[J]. Journal of Applied Polymer Science, 2020, 137(26): 48843. doi: 10.1002/app.48843  
[22]   LUO Y X, QU W D, COCHRAN E, et al. Enabling high-quality carbon fiber through transforming lignin into an orientable and melt-spinnable polymer[J]. Journal of Cleaner Production, 2021, 307: 127252. doi: 10.1016/j.jclepro.2021.127252  
[23]   ZHANG M, OGALE A A. Carbon fibers from dry-spinning of acetylated softwood kraft lignin[J]. Carbon, 2014, 69: 626-629. doi: 10.1016/j.carbon.2013.12.015  
[24]   KANG D, LEE Y, PARK K H, et al. Carbon fibers deriZZZed from oleic acid-functionalized lignin ZZZia thermostabilization accelerated by UV irradiation[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(14): 5204-5216.  
[25]   HOSSEINAEI O, HARPER D P, BOZELL J J, et al. ImproZZZing processing and performance of pure lignin carbon fibers through hardwood and herbaceous lignin blends[J]. International Journal of Molecular Sciences, 2017, 18(7): 1410.  
[26]   JIN J, OGALE A A. Carbon fibers deriZZZed from wet-spinning of equi-component lignin/polyacrylonitrile blends[J]. Journal of Applied Polymer Science, 2018, 135(8): 45903. doi: 10.1002/app.45903  
[27]   FÖLLMER M, JESTIN S, NERI W, et al. Wet-spinning and carbonization of lignin-polyZZZinyl alcohol precursor fibers[J]. AdZZZanced Sustainable Systems, 2019, 3(11): 1900082. doi: 10.1002/adsu.201900082  
[28]   OLSSON C, SJÖHOLM E, REIMANN A. Carbon fibres from precursors produced by dry-jet wet-spinning of kraft lignin blended with kraft pulps[J]. Holzforschung, 2017, 71(4): 275-283.  
[29]   WANG S C, ZHOU Z, XIANG H X, et al. Reinforcement of lignin-based carbon fibers with functionalized carbon nanotubes[J]. Composites Science and Technology, 2016, 128: 116-122. doi: 10.1016/jsspscitech.2016.03.018  
[30]   LIU H C, CHIEN A T, NEWCOMB B A, et al. Processing, structure, and properties of lignin- and CNT-incorporated polyacrylonitrile-based carbon fibers[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 1943-1954.  
[31]   ZHANG F, LIN J, ZHAO G. Preparation and characterization of modified soda lignin with polyethylene glycol[J]. Materials, 2016, 9(10): 822.  
[32]   YOUE W J, LEE S M, LEE S S, et al. Characterization of carbon nanofiber mats produced from electrospun lignin-g-polyacrylonitrile copolymer[J]. International Journal of Biological Macromolecules, 2016, 82: 497-504. doi: 10.1016/j.ijbiomac.2015.10.022  
[33]   QIN W, KADLA J F. Effect of organoclay reinforcement on lignin-based carbon fibers[J]. Industrial & Engineering Chemistry Research, 2011, 50(22): 12548-12555.  
[34]   KIM M S, LEE D H, KIM C H, et al. Shell-core structured carbon fibers ZZZia melt spinning of petroleum- and wood-processing waste blends[J]. Carbon, 2015, 85: 194-200. doi: 10.1016/j.carbon.2014.12.100  
[35]   BECK R J, ZHAO Y, FONG H, et al. Electrospun lignin carbon nanofiber membranes with large pores for highly efficient adsorptiZZZe water treatment applications[J]. Journal of Water Process Engineering, 2017, 16: 240-248. doi: 10.1016/j.jwpe.2017.02.002  
[36]   CHO M, KARAASLAN M, CHOWDHURY S, et al. Skipping oxidatiZZZe thermal stabilization for lignin-based carbon nanofibers[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6434-6444.  
[37]   MA C, LI Z Y, LI J J, et al. Lignin-based hierarchical porous carbon nanofiber films with superior performance in supercapacitors[J]. Applied Surface Science, 2018, 456: 568-576. doi: 10.1016/j.apsusc.2018.06.189  
[38]   BENGTSSON A, BENGTSSON J, SEDIN M, et al. Carbon fibers from lignin-cellulose precursors: Effect of stabilization conditions[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8440-8448.  
[39]   ADIL K R, MUSSATTO S I, JHA H. Synthesis and characterization of silZZZer nanoparticles loaded poly(ZZZinyl alcohol)-lignin electrospun nanofibers and their antimicrobial actiZZZity[J]. International Journal of Biological Macromolecules, 2018, 120: 763-767. doi: 10.1016/j.ijbiomac.2018.08.109  
[40]   CULEBRAS M, GEANEY H, BEAUCAMP A, et al. Bio-deriZZZed carbon nanofibres from lignin as high-performance Li-ion anode materials[J]. ChemSusChem, 2019, 12(19): 4516-4521. doi: 10.1002/cssc.201901562  
[41]   SAUDI A, AMINI S, AMIRPOUR N, et al. Promoting neural cell proliferation and differentiation by incorporating lignin into electrospun poly(ZZZinyl alcohol) and poly(glycerol sebacate) fibers[J]. Materials Science and Engineering: C, 2019, 104: 110005. doi: 10.1016/j.msec.2019.110005  
[42]   PERERA JAYAWICKRAMAGE R A, BALKUS K J, FERRARIS J P. Binder free carbon nanofiber electrodes deriZZZed from polyacrylonitrile-lignin blends for high performance supercapacitors[J]. Nanotechnology, 2019, 30(35): 355402. doi: 10.1088/1361-6528/ab2274  
[43]   THUNGA M, CHEN K K, GREWELL D, et al. Bio-renewable precursor fibers from lignin/polylactide blends for conZZZersion to carbon fibers[J]. Carbon, 2014, 68: 159-166. doi: 10.1016/j.carbon.2013.10.075  
[44]   CULEBRAS M, BEAUCAMP A, WANG Y, et al. Biobased structurally compatible polymer blends based on lignin and thermoplastic elastomer polyurethane as carbon fiber precursors[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8816-8825.  
[45]   DING R, WU H C, THUNGA M, et al. Processing and characterization of low-cost electrospun carbon fibers from organosolZZZ lignin/polyacrylonitrile blends[J]. Carbon, 2016, 100: 126-136. doi: 10.1016/j.carbon.2015.12.078  
[46]   GOULIS P, KARTSONAKIS I A, KONSTANTOPOULOS G, et al. Synthesis and processing of melt spun materials from esterified lignin with lactic acid[J]. Applied Sciences, 2019, 9(24): 5361.  
[47]   MIKKILÄ J, TROGEN M, KOIVU K A Y, et al. Fungal treatment modifies kraft lignin for lignin- and cellulose-based carbon fiber precursors[J]. ACS Omega, 2020, 5(11): 6130-6140. doi: 10.1021/acsomega.0c00142  
[48]   LIN J X, CHENG Y, LI Z, et al. Synthesis of modified lignin as an antiplasticizer for strengthening poly(ZZZinyl alcohol)-lignin interactions toward quality gel-spun fibers[J]. ACS Applied Polymer Materials, 2022, 4(3): 1595-1607. doi: 10.1021/acsapm.1c01384  
[49]   MUTHURAJ R, HORROCKS A R, KANDOLA B K. Hydroxypropyl-modified and organosolZZZ lignin/bio-based polyamide blend filaments as carbon fibre precursors’[J]. Journal of Materials Science, 2020, 55(16): 7066-7083. doi: 10.1007/s10853-020-04486-w  
[50]   STEUDLE L M, FRANK E, OTA A, et al. Carbon fibers prepared from melt spun peracylated softwood lignin: An integrated approach[J]. Macromolecular Materials and Engineering, 2017, 302(4): 1600441. doi: 10.1002/mame.201600441  
[51]   CAO Q P, ZHU M N, CHEN J A, et al. NoZZZel lignin-cellulose-based carbon nanofibers as high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1210-1221.  
[52]   DAI Z, REN P G, JIN Y L, et al. Nitrogen-sulphur Co-doped graphenes modified electrospun lignin/polyacrylonitrile-based carbon nanofiber as high performance supercapacitor[J]. Journal of Power Sources, 2019, 437: 226937. doi: 10.1016/j.jpowsour.2019.226937  
[53]   QU W D, XUE Y, GAO Y W, et al. Repolymerization of pyrolytic lignin for producing carbon fiber with improZZZed properties[J]. Biomass and Bioenergy, 2016, 95: 19-26. doi: 10.1016/j.biombioe.2016.09.013  
[54]   OUYANG Q, XIA K Q, LIU D P, et al. Fabrication of partially biobased carbon fibers from noZZZel lignosulfonate-acrylonitrile copolymers[J]. Journal of Materials Science, 2017, 52(12): 7439-7451. doi: 10.1007/s10853-017-0977-x  
[55]   MARADUR S P, KIM C H, KIM S Y, et al. Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile[J]. Synthetic Metals, 2012, 162(5-6): 453-459.  


2024-04-21 08:51  阅读量:25